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ABSTRACT 

Statisticians face increasingly the task of analyzing large and high dimension 

multivariate data sets. This is due to the advances in computer technology which have 

facilitated greatly the collection of large data sets and, on the other hand, to the fact 

that most statistical experiments are multivariate in nature. One of the primary 

problems encountered in this task is robust estimation of location and scatter. In the 

literature the most popular and widely used robust parametric method for such 

parameter estimation is the so-called Fast MCD. However, although it is affine-

equivariant and has high breakdown point, it is not apt when the data sets are of high 

dimension because its computational efficiency becomes lower. This is a direct 

consequence from the use of Mahalanobis distance or, equivalently, Mahalanobis 

depth in data ordering process which needs the inversion of covariance matrix and the 

use of MCD as the objective function. In this paper we propose a method which is as 

effective as Fast MCD but computationally more efficient. For this purpose, in 

multivariate ordering step, we use a new depth function which is equivalent to 

Mahalanobis depth and has lower computational complexity. Furthermore, in data 

concentration step, we use vector variance as the measure of multivariate scatter 

instead of covariance determinant and we replace the objective function MCD with 

minimum vector variance to reduce the complexity of this step. At the end of the 

paper we illustrate the effectiveness of this method using a simulation experiment. 

 
Keywords: affine-equivariant, breakdown point, center-outward ordering, data depth, 

multivariate scatter, robust estimation of location and scatter. 

 

INTRODUCTION 

Suppose a random data cloud in 
pR  or a p-variate probability 

distribution is given. It is then natural to ask ‘How can we define an ordering 

in that cloud of random vectors or probability distribution?’ The ability to 

answer this question is essential in order to, for example, separate the ‘good’ 

from the ‘bad’ data, and more specifically, to construct a robust estimation 

of the parameters.  

 

The idea of ordering in a space of dimension p = 1, 2, and 3 is as old 

as the history of human civilization which is 1.5 million years old. At the 

early history, human intellect was able to do the simplest ordering and to 
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determine whether two objects differ to each other and which one is better. 

Later on, in a more civilized artifact such as, for example, hieroglyphic 

writing dated 2500 BC we learn how phonetic characters, and characters 

representing ideas, were ordered to form historical documents. In modern 

era, when one says that Kuala Lumpur is geographically farther than 

Moscow from Paris, we understand that the circle with Moscow at its 

circumference and Paris as its center is inside the concentric circle with 

Kuala Lumpur at its circumference. This kind of ordering has similar 

meaning when in geocentric system of Ptolemy one says that the Moon is 

nearer than the Sun from the Earth. In Copernican heliocentric system, we 

say that Pluto is farther from the Sun than Venus because the elliptical orbit 

of Venus is entirely included in the elliptical orbit of Pluto. In these 

circumstances, objects in a space of dimension p = 2 and 3 are ordered in the 

sense of center-outward ordering. In recent years this notion of ordering, 

constructed based on the concept of depth function, has received very much 

attention in the statistical literature. Algebraic and geometric viewpoints of 

this concept have been developed and many approaches in multivariate 

analysis have been proposed. See, for example, half-space depth proposed 

by Hodges in 1955 and by Tukey in 1975 as reported in Liu (1990), convex 

hull peeling depth of Barnett (1976), Oja depth of Oja (1983), simplicial 

depth of Liu (1990), majority depth of Singh in 1991 as reported in Liu et al. 

(1999), regression depth of Rousseeuw and Hubert (1999), tangent depth of 

Mizera (2002), projection depth of Zuo (2003), spherical depth and elliptical 

depth of Elmore (2005). 

 

The way people think and develop their viewpoint is fundamental in 

science. Kuhn (1997) has observed that the early developmental stages of 

most sciences have been characterized by continual competition between a 

number of distinct views of nature. ‘View of nature’ is a key success factor 

in exploring new frontier of science, the endless frontier. The ability to view 

the nature in distinct manner will guide us in producing a new paradigm, i.e., 

unprecedented and open-ended finding. An example of paradigm in 

conjunction with ordering problem is the so-called Cartesian coordinate 

system. Human civilization had to wait until Descartes, almost four centuries 

ago, investigated the ordering phenomenon and formulated it in that 

coordinate system to order objects in high dimensional space. The basis of 

that system is to order objects to make them easy to see clearly. Descartes, in 

his philosophical principles of scientific activities, addressed the following 

prophetic words which became the turning point of human civilization: 

“Never to accept anything for true which I did not clearly know to be such” 

In empirical sciences, the spirit of Descartes’ words can be seen in the 

following wise phrase of George E.P. Box: “All models are wrong but some 
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are useful” These phrases and Kuhn’s ‘view of nature’ are in the spirit of 

this paper. 

 

In the early history of modern statistics one of the great problems 

encountered was to measure how far a data point from the others in the 

space of any dimension. This was pioneered by French astronomer Pierce in 

1852 when he had to separate anomaly data from the majority. See 

Kuwahara (1972) for more information. In modern statistics, following the 

advancement of probability theory, statisticians are interested in measuring 

how far a fact or evidence or a statistic differs from the hypothetical 

phenomenon. ‘What do we mean by far?’ and ‘How far is far?’ are among 

important problems that must be clarified. Statisticians realize that, in 

general, these questions push them to work in Hilbert space as their principal 

place and ordering objects in that space is their main tasks.  In sampling 

context, the question becomes ‘How do we define an ordering structure in a 

finite set of independent and identically distributed (i.i.d.) random vectors 

in
pR ?’ To answer this question it is natural to consider the concept of 

center-outward ordering illustrated at the beginning of this section. One of 

the most attractive and widely used concepts to do that kind of ordering is 

the so-called depth function. Other concepts such as proposed, for example, 

by Wilks (1963), Rohlf (1975), Derquenne (1992), Pan et al. (2000), and 

Pena and Prieto (2001) are to order multivariate data in different ways. Due 

to its geometric structure which is easy to visualize the concept of depth 

function has received very much attention and thus it will be exploited in 

this paper. 

 

The first idea of depth function came from parametric domain when 

in 1936 Mahalanobis introduced what we call now Mahalanobis depth. See 

Liu et al. (1999). It is the inverse of one plus the squared Mahalanobis 

distance. Consequently, it is sensitive to the presence of even one single 

outlier. This is the reason why at the early period of its development it had 

received far less attention than non-parametric depth function because the 

latter is robust. However, nowadays, there are many approaches available to 

handle the non-robustness of Mahalanobis distance. Among them, MVE 

(minimizing the volume of ellipsoid) and MCD (minimizing the covariance 

determinant) introduced by Rousseeuw (1985) are the most popular. Their 

popularity is due to their desirable properties, namely, affine-equivariant and 

high breakdown point. See Lopuhaa and Rousseeuw (1991), Hadi (1992), 

Croux and Haesbroeck (1999), Rousseeuw and van Driessen (1999), Werner 

(2003), Hardin and Rocke (2004) for further discussion on these properties. 

However, in recent years MCD receives much more attention than MVE due 
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to its performance in estimating the true location and scatter. See Rousseeuw 

and van Driessen (1999), Werner (2003) and Hubert et al. (2005) for the 

details.  

 

Some improved versions of MCD algorithm are available. For 

example, feasible solution algorithm in Hawkins (1994) and Hawkins and 

Olive (1999), Fast MCD (FMCD) algorithm in Rousseeuw and van Driessen 

(1999), block adaptive computationally-efficient outlier nominators 

(BACON) in Billor et al. (2000), improved FMCD algorithm in Hubert et al. 

(2005), and minimum vector variance (MVV) in our recent work 

Herwindiati et al. (2007). These versions are to increase the computational 

efficiency. Nowadays, FMCD is available in statistical packages such as S-

Plus (function cov.mcd), R (rrcov), and SAS Version 9 (PROC 

ROBUSTREG). See Hubert et al. (2005) for the details. This shows that 

FMCD is very well accepted. However, its computational complexity 

increases exponentially when the dimension of the data sets increases. The 

larger the number of variables p the higher the complexity and thus the 

lower the computational efficiency. This is caused by the fact that FMCD 

involves the inversion of covariance matrix and covariance determinant. 

  

The main concern of this paper is to find a new method which is able 

to reduce the level of complexity of FMCD and MVV, and maintain its 

effectiveness. An investigation to the structure of these algorithms will lead 

us to the conclusion that they consist of two main steps. The first step is the 

step of ordering the sample points in the sense of center-outward ordering. 

The second or data concentration step is to find a subset satisfying the 

objective function. In FMCD the objective function is to minimize 

covariance determinant while in MVV is to minimize vector variance. The 

method that we propose in this paper has the same structure as those 

algorithms but uses different concept. In the first step, instead of using 

Mahalanobis distance, we use a new data depth proposed in our recent work 

Djauhari and Umbara (2007) and, in the second step, we use vector variance 

as the scatter measure studied analytically in Djauhari (2007). See also 

Herwindiati et al. (2007) for its application in outliers labeling.  

 

This paper is organized as follows. In the next section, some recent 

advancement in data depth will be discussed and a new data depth proposed 

in Djauhari and Umbara (2007) which is equivalent to Mahalanobis depth 

will briefly be presented. Later on, in Section 3 we discuss the so-called 

vector variance. Section 4 will be focused on the application of the results in 

Sections 2 and 3 for constructing a new method of robust estimation of 

location and scatter. We show that this method is computationally more 
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efficient than FMCD and MVV. Furthermore, a simulation study in Section 

5 shows that it is as effective as them. Additional remarks will close this 

presentation. 

 

SOME RECENT ADVANCEMENT IN DATA DEPTH 

Simple extensions of univariate statistics to the multivariate setting 

do not properly capture the higher-dimensional features of multivariate data 

because there is no natural and clear order principle in more than one 

dimension. For example, median and quantiles in univariate data analysis 

and inference have played important roles that their analogues in 

multivariate setting have been studied for years. In the last decade the 

concept of depth function has received considerable attention due to its 

ability to provide a center-outward ordering of vectors in the space of any 

dimension. More specifically, it is one of the fundamental concepts in the 

study of data depth which measures how deep a given point is with respect 

to a data cloud or a distribution. In other words, data depth is a centrality 

measure of a given random point. It then provides a new notion of 

multivariate location and scatter for the underlying distribution. In this 

regard, the most desirable data depth is of course the one which is invariant 

to the choice of coordinate system.   

 

Although that notion of affine-invariance is desirable, most of the 

current depth functions which satisfy this property are quite cumbersome to 

compute in high dimension, e.g., Mahalanobis depth. In general, the desired 

depth functions are those which satisfy the following five key properties: 

affine-invariant, monotone relative to deepest point, attaint maximum value 

at the center, vanishes at infinity, and computationally efficient. Based on 

these properties the concept of depth function has been put into a general 

context of theory and applications in multivariate analysis. See, for example, 

Liu et al. (1999) and Zuo and Serfling (2000) for general theoretical 

discussion. Those who are interested in a comprehensive discussion on its 

applications in regression, confidence region, outlier identification, 

classification, and discrimination are suggested to consult Mosler (2004). 

Furthermore, in Liu et al. (1999), Dai et al. (2006) and Mosler (2004) one 

also can find an application of depth function in multivariate control charts. 

An application in aviation safety analysis is presented in Cheng et al. (2000). 

Other applications in nonparametric multivariate inference such as rank 

tests, quality control, robust estimation of location and scatter, multivariate 

goodness of fit, and outlier detection can easily be found in the literature. 

More importantly, from theoretical viewpoint, data depth offers new 
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challenges in the interface of statistics, computer science, algebra, and 

computational geometry. 

 

In what follows our attention will be focused on the Mahalanobis 

depth which is a principal base of FMCD and MVV and then a more 

efficient version will be presented. 

 

A more efficient version of Mahalanobis depth 

Let 1X , 2X , ..., 
n

X  be a random sample from a p-variate distribution 

where the second moment exists. The sample mean vector and sample 

covariance matrix are, respectively, 

 

1

1 n

i

i

X X
n =

= ∑  and 
1

1
( )( )

1

n
t

i i

i

S X X X X
n =

= − −
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∑  

 

Sample version of Mahalanobis depth of
i

X , see Liu et al. (1999), is defined 

as 

i
MD  = 

1

1

1 ( ) ( )t

i i
X X S X X

−+ − −
         (1) 

 

It measures how depth 
i

X  is with respect to the random cloud { 1X , 2X , ..., 

n
X }. The largest the value of 

i
MD  the closest the point 

i
X  to the center 

X .  

 

We recognize that the second term of the denominator on the right hand 

side of 
i

MD  is the squared Mahalanobis distance. In the literature, see for 

example, Hadi (1992), Liu et al. (1999), Rousseeuw and van Driessen 

(1999), Werner (2003), and Herwindiati et al. (2007), that distance is 

computed directly from the definition. Thus, we need the inversion of 

sample covariance matrix S. This is a very tedious job with high 

computational complexity when the data sets are of high dimension. To 

eliminate this obstacle in our recent work, Djauhari and Umbara (2007), we 

define a new depth function which satisfies the following properties: 

 

1. It is equivalent to Mahalanobis depth in the sense that they give the 

same multivariate ordering. 

2. It is computationally more efficient than Mahalanobis depth.  
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Our definition is based on the following two propositions. The proof 

can be seen in Djauhari and Umbara (2007).  

 

Proposition 1. Let 1X , 2X , ..., 
n

X  be a random sample from a p-variate 

distribution where the second moment exists. If 

 

i
M  =  

( )
( )

1
t

i

i

X X

X X S

 −
 
 − 

 

 

is a matrix of size (p+1)× (p+1) associated with 
i

X ; i = 1, 2, ... , n, S  and 

iM  are the determinant of S  and 
i

M , respectively, then  

 

i
MD  = 

2 i

S

S M−
 

 

 

Proposition 2. 
i

MD  ≤  jMD  if and only if iM  ≤  
j

M . 

 

Proposition 2 shows that iM  is a depth function equivalent to
i

MD . The 

two depth functions measure the depth of 
i

X and define the same ordering 

structure. The maximum value of iM  , which equals S , is attained at the 

center X  and tends to −∞  if
i

X goes to infinity. This result indicates that 

the fourth property of depth function can be reformulated. Traditionally, that 

property says that a depth function must vanish at infinity. As iM  is in 

( −∞ , S ), that property should be extended: a depth function vanishes or 

tends to −∞  at infinity. 

 

Relative computational complexity 

An advantage of iM  compared with 
i

MD  is that it does not need 

any matrix inversion in its computation. It only needs to compute the 

determinant of a symmetric matrix. Consequently, its computational 

complexity is lower than that of 
i

MD . More precisely, if iM  is computed 

using Cholesky decompotition, then its asymptotic relative computational 
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complexity with respect to 
i

MD , i.e., the ratio of the number of operations 

in the computation of iM  and that of
i

MD  is 8 11 . See Djauhari and 

Umbara (2007) for the details. We learn how the complexity of iM  differs 

significantly from
i

MD . Due to this advantage in Section 4 iM  will be 

exploited to construct a new method. 

 

MEASURE OF SCATTER 

Vector variance 

Consider a random vector X  = ( )(1) (2)

t
t t

X X  where (1)X  and 

(2)X  are of p and q dimensions, respectively. It is customary to write the 

covariance matrix Σ  of X in the form of partitioned matrix 

 










ΣΣ

ΣΣ
=Σ

2221

1211
 

 

where ijΣ  = ( ) ( )( ) ( ) ( ) ( )
t

i i j jE X Xµ µ
 

− − 
 

 and  ( )iµ  = ( )( )iE X ; 

 i, j = 1, 2.  

 

Cleroux (1987) defines ( )12 21Tr Σ Σ  as a measure of linear 

relationship between the two random vectors (1)X  and (2)X , and he calls it 

vector covariance. It is equal to the trace, or the sum of all diagonal 

elements, of 2112ΣΣ . By using the vec operator which transforms a matrix 

* of size (r×c) into a column vector ( )vec *  of dimension rc obtained by 

stacking the columns of * one underneath the other, see Muirhead (1982) 

and Schott (1997), vector covariance can be written as the scalar product 

( ) ( )12 12vec ,vecΣ Σ  or, equivalently, the norm ( )
2

12vec Σ . 

Accordingly, we call the parameters ( )
2

11vec Σ  = ( )2
11Tr Σ  and 

( )
2

22vec Σ  = ( )2
22Tr Σ  vector variance of (1)X  and (2)X , respectively. 
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If p = q = 1, vector covariance is the square of the ordinary covariance and 

vector variance is the square of the ordinary variance. 

 

In Djauhari (2007), we define vector variance (VV) as multivariate 

scatter measure. Let us consider an arbitrary random vector X of p 

dimension with covariance matrix Σ . By definition, VV of X is the sum of 

square of all elements of Σ . Heuristically, like covariance determinant (CD), 

VV is a non-negative real valued function of Σ  which involves the 

covariance structure. Its value indicates the degree of how a multivariate 

distribution is scattered. The larger the value of VV the more scattered the 

distribution around its mean vector in a subspace of dimension q ≤  p. It is 

equal to zero if and only if the distribution is degenerate at the mean vector. 

These properties are sufficient for VV to be considered heuristically as a 

scatter measure. Interestingly, this measure satisfies some desirable 

properties not possessed by CD. 

 

In what follows we present an analytical approach. Let 1X , 2X , . . . , 

nX  be a random sample from a p-variate distribution where the second 

moment exists. Rousseeuw and van Driessen (1999, Theorem 1, p. 214) 

show an important result which is the basis of their notion of ‘more 

scattered’ data subset. Let 1H  and 2H  be two MCD subsets of X = { 1X , 

2X , . . . , nX } of the same number of elements. Based on that theorem, 

they derive the criterion that 1H  is more scattered than 2H  if the 

covariance matrix 2S  of all sample items belonging to 2H  has smaller 

determinant than that of the covariance matrix 1S  of all sample items in 1H . 

They also show that if the procedure in that theorem is repeated several 

times, the results are convergent, i.e., there exist an index m such that mS  

= 1mS −  meaning that mH  is as scattered as 1mH − . This notion of ‘more 

scattered’ subset, defined by Rousseeuw and van Driessen (1999, p. 214), 

has the following implication. Let 1kλ ≥  2kλ ≥  … ≥  kpλ  > 0 be the 

ordered eigenvalues of kS ; k = 1, 2. Then, 1H is more scattered than 2H  

if 21λ . 22λ  … 2 pλ < 11λ . 12λ … 1pλ . 

Another important result given by Rousseeuw and van Driessen (1999) 

is that an MCD subset H of X is separated from X\H by an ellipsoid. This 
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implies that, if 1H  is more scattered than 2H , the smallest ellipsoid that 

covers 2H  has smaller volume than that of the smallest ellipsoid which 

covers 1H . There exists then an affine transformation such that the 

transformed former ellipsoid is contained entirely in the latter. This 

viewpoint will lead us to another notion of ‘more scattered’ subset which 

will be defined and exploited. We define that 1H is more scattered than 2H  

if 2iλ  < 1iλ  for all i = 1, 2, … , p. 

 

This implies that, because all eigenvalues are positive and the 

covariance structure is involved, if 1H  is more scattered than 2H , then 

 

1. 2S < 1S , and  

2. ( )
2

2vec S < ( )
2

1vec S .  

 

The first conclusion is the necessary condition for 1H  to be more 

scattered than 2H  used by Rousseeuw and van Driessen (1999) and Hubert 

et al. (2005) to define MCD as the objective function in FMCD algorithm. 

The second one is the necessary condition for 1H  to be more scattered 

than 2H that we use in our work Djauhari (2007). According to this 

necessary condition, the appropriate objective function is minimum vector 

variance. 

 

Distributional properties 

Let 1X , 2X , . . . , nX , . . . be a sequence of random vectors of p 

components which converges in probability to a constant vector c in 
pR and 

converges in distribution to a p-variate normal distribution ( ),pN c Σ . Let 

also ( )u x  be a real valued function where u′ exists and ( )u x′  ≠ 0 for all x 

in the neighborhood of c. Then, nY  = ( )nu X  can be written in the form 
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nY  = ( )
( )

( )
t

n
n

u c
u c X c R

X
ξ

∂ 
+ − + 

∂ 
   (2) 

 

where ( ) ( )
1

2

t
n nR X c A X cξ ξ= − − , the (i,j)-element of the symmetric 

matrix Aξ  is ( )
( )2

,
( ) ( )n n

u
a i j

X i X j

ξ∂
=

∂ ∂
; i, j = 1, 2,  . . .  , p, ( )nX i is the 

i-th element of nX , and ξ  is in the neighborhood of c satisfying 

nc X cξ − < − . Since nX  
d

→  ( ),pN c Σ  and the quadratic form 

Rξ  converges faster than the linear form 
( )

( )
t

n
n

u c
X c

X

∂ 
− 

∂ 
 to 0, we 

have  

 

nY  
d

→ ( )2
Y YN ,µ σ      (3) 

 

where Yµ  = ( )u c  and 
2
Yσ  = 

( ) ( )
t

n n

u c u c

X X

∂ ∂   
Σ   

∂ ∂   
. 

 

In Djauhari (2007) we use the result (3) to investigate the asymptotic 

distribution of sample VV. Let 1X , 2X , . . . , nX  be a random sample 

from ( )pN ,µ Σ . Under this normality assumption, ( )vec S  is the sum of (n 

– 1) i.i.d. random vectors. Thus, according to the central limit theorem 

( )vec S  converges in distribution to a
2p -variate normal. Its mean vector is 

( )vec Σ  and its covariance matrix is given in the following proposition. The 

proof can be seen, for example, in Muirhead (1982) and Schott (1997). 

 

Proposition 3. Let K be the commutation matrix of size (
2p ×

2p ),  
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i.e., K =  

1 1

p p
t

ij ij

i j

N N

= =

⊗∑ ∑  and ijN  is a (p × p) matrix having all 

elements equal 0 except its (i,j)-th element equals 1. The covariance matrix 

of ( )vec S  is ( )( )2
1

1 p
I K

n
+ Σ ⊗ Σ

−
.  

 

Corollary 1 

Let Γ  = ( )( )2p
I K+ Σ ⊗ Σ .  

Then, we have ( ) ( ){ }1n vec S vec− − Σ  
d

→  ( )2 0
p

N ,Γ .  

 

Corollary 2 

Let ( )( )u vec S  be a real valued function of ( )vec S , u′  exists and 

( )( )0u' vec S  ≠ 0 for all 0S  in the neighborhood of Σ . Then, according to 

(3) and Corollary 1,  

 

( )( ) ( )( ){ }1n u vec S u vec− − Σ  
d

→  ( )20N ,σ         (4) 

 

where 
2σ  = 

( )( )
( )

( )( )
( )

t
u vec u vec

vec S vec S

   ∂ Σ ∂ Σ
Γ   

   ∂ ∂   
. 

 

Based on (4), if we define ( )( )u vec S  = ( )
2

vec S , we have the following 

result. 

 

Proposition 4. ( ) ( ){ }2 2
1n vec S vec− − Σ  

d
→  ( )20N ,σ  with 

2σ  = ( ) ( )4
t

vec vecΣ Γ Σ .  

 

The application of this proposition is seemingly complicated even for 

moderate value of p because 
2σ  is a quadratic form of very high dimension, 
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i.e.,
2p . However, see Djauhari (2007), 

2σ  can be written in a simple 

manner as follows. 

 

Proposition 5. 
2σ  =  ( )

2
28 vec Σ . 

The last two propositions show that ( ) ( ){ }2 2
1n vec S vec− − Σ  

converges in distribution to a normal distribution with mean 0 and variance 

2σ  which is equal to eight times the sum of square of all elements of
2Σ . 

 

Some advantages 

In what follows we underline some advantages of VV. First, we 

mention its speed of convergence. The asymptotic distribution in Proposition 

4 is obtained by using the Taylor series of sample VV around Σ  up to the 

second or linear term (2). Theoretically, because sample VV is a quadratic 

form, it can exactly be represented by a Taylor series up to the third or 

quadratic term. We point out in Djauhari (2007) that based on a simulation 

study the contribution of the quadratic terms into sample VV is very small, 

i.e., of order less than 
510−

 even for small sample size n such as n = 5. This 

indicates that, for practical purpose, it is sufficient to approximate the 

distribution of sample VV by normal distribution given in Proposition 4. 

Second, see Djauhari (2007), the power of vector variance-based test is 

promising compared with likelihood-based test and covariance determinant-

based test, when testing 0 0H : Σ = Σ  versus 1 0H : kΣ = Σ  with k > 1 and 

0Σ  is a specified positive definite matrix. In general, the vector variance-

based test is more sensitive than the likelihood-based test to small shift of 

covariance structure when n and k are small. Furthermore, the vector 

variance-based test and the covariance determinant-based test have similar 

performance when p is small. When p and n are large, the former is more 

sensitive than the latter to large shift of covariance structure. Third, VV is 

computationally more efficient than CD. Fourth, unlike CD, VV does not 

need the condition that the covariance matrix must be non-singular. 

 

Those interesting properties of sample VV, together with those of 

iM , will be exploited in the next section to construct a robust estimation 

method of location and scatter. 
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PROPOSED ROBUST METHOD 

Covariance matrix is a principal source of information in multivariate 

analysis. Its estimation is at the primary concern of the analysts. However, 

the presence of even one single outlier can distort the classical estimate and 

making it useless. Outliers are data points that deviate from the usual 

assumptions and/or from the pattern suggested by the majority of data. They 

are more likely to occur in data sets with many observations and or 

variables, and often they do not show up by simple visual inspection. 

Detecting outliers in multivariate data is not trivial. A complicated problem 

often appears for two or more outliers. Moreover, outliers might be hard to 

detect when the number of variables exceeds two because it is not easy to 

get visual illustration. See Rousseeuw and van Zomeren (1990) for a deep 

discussion. The difficulty increases when the data set is of large size with 

large number of variables. Thus, robust estimation which incorporates the 

presence of outliers is needed. By robust estimation we mean the estimation 

we would have found without the outliers. 

 

The concept of separating outlier suspects from the bulk of data has 

been developed in recent years. After separation process, outlier testing can 

be done on the group of suspects only. That concept has been introduced 

more than four decades and still received considerable attention. See, for 

example, Wilks’s separation concept (1963) constructed based on the notion 

of closeness measure of two data subsets, Rohlf’s (1975) based on the 

minimum spanning tree of inter-points Euclidean distance, and Derquenne’s 

(1992) based on his definition of univariate transformation. However, these 

are not robust to the presence of outliers or too expensive. Later on, to 

mention some, Pan et al. (2000) and also Pena and Prieto (2001) propose to 

separate suspects from the group of ‘good’ data using projection methods. In 

particular, Pena and Prieto use projection on 2p orthogonal directions; the 

first p maximizes the kurtosis and the remainder minimizes it. These 

projection methods are robust but very tedious and time consuming 

especially when the data sets are of high dimension. Rousseeuw (1985) 

proposes the MVE and MCD methods to construct robust estimates of 

location and scatter. Both methods possess the desirable properties, namely, 

affine-equivariant and high breakdown point. See also Rousseuw and Leroy 

(1987) and Lopuhaa and Rousseeuw (1991). However, as Hadi (1992) and 

Werner (2003) point out, they are computationally expensive. Rousseeuw 

and van Zomeren (1990) construct robust distance by modifying the number 

of data in each subset used in MVE. Hadi (1992) approximates MVE and 

modifies MCD by avoiding the possibility of covariance matrix to be 
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singular in each subset. It was Rousseeuw and van Driessen (1999) who 

propose FMCD algorithm which becomes a very well accepted algorithm. 

 

FMCD is an effective algorithm which is able to give high robust 

estimates of location and scatter. It is a very popular and widely used 

algorithm. Recently, Hubert et al. (2005) present an improvement in order to 

ensure that the final value of the objective function is as close as possible to 

the global minimum. They claim that: “It turn out that most of the currently 

available highly robust multivariate estimators are difficult to compute, 

which makes them unsuitable for the analysis of large data bases. Among a 

few exceptions is the MCD of Rousseeuw (1985). The MCD is a highly 

robust estimator of multivariate location and scatter that can be computed 

efficiently with the FMCD algorithm of Rousseeuw and van Driessen 

(1999).” In Herwindiati et al. (2007) we propose MVV algorithm to reduce 

the computational complexity of FMCD by replacing the objective function 

with minimum vector variance. Although FMCD and MVV are effective, 

they might not be computationally efficient for high dimension data sets 

because they involve the inversion of covariance matrix. Besides, as 

Angiulli and Pizzuti (2005) point out, the computational efficiency is as 

important as the effectiveness of any algorithm.  

 

In what follows we propose a new robust method, having the same structure 

as FMCD and MVV, by using the results discussed in the previous sections. 

It is as effective as FMCD and MVV, and computationally more efficient. 

To start with, we recall what FMCD and MVV are. 

 

Separation process based on FMCD and MVV 

 

 Let { }1 2, , , nX X X� be a random data set of p-variate 

observations. FMCD algorithm is as follows. 

 

1. Take a subset oldH  containing h = 
1

2

n p+ + 
  

 data points 

where x    is the largest integer less than or equal to x. 

 

2. Compute the mean vector 
oldHX and covariance matrix 

oldHS  of all observations belonging to oldH . Then, for all i = 

1, 2, … , n, compute, 
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( )2

oldH
d i  = ( )2 ,

oldold
i HH

d X X  = 

( ) ( )1
old oldold

t

i H i HH
X X S X X

−− −  

 

3. Sort these squared distances in increasing order,  

 

( )2 (1)
oldH

d π ≤ ( )2 (2)
oldH

d π ≤  . . . ≤  ( )2 ( )
oldH

d nπ  

where π is a permutation on {1, 2, … , n}. 

 

4. Define newH  = { }(1) (2) ( ), , , hX X Xπ π π�  

5. Compute 
newHX , 

newHS  and ( )2 ,
newnew

i HH
d X X . 

6. If 
newHS  = 0, repeat steps 1-5. If 

newHS  = 
oldHS , the 

process is stopped. Otherwise, the process is continued until 

the k-th iteration if 
kHS  = 

1kHS
+

. Thus, we have 

1HS ≥
2HS ≥  . . . ≥  

kHS  = 
1kHS

+
. 

 

Let MCDT  =  
kHX  and MCDS  = 

kHS  be the location and 

covariance matrix issued from that algorithm. Robust squared Mahalanobis 

distance based on FMCD is defined as, 

( )2 ,RMCD i MCDd X T =  

 

( ) ( )1t
i MCD MCD i MCDX T S X T

−− −  

 

for all i = 1, 2, … , n. Observations having large ( )2 ,RMCD i MCDd X T  will 

be considered as suspects. 

 

We recall also the MVV algorithm that we propose in Herwindiati et al. 

(2007). This algorithm is to replace the sixth point in the above algorithm 

with the following. 
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6*. If ( )2

newH
Tr S  = 0, repeat steps 1-5. If ( )2

newH
Tr S  = 

( )2

oldH
Tr S , the process is stopped. Otherwise, the process is continued 

until the k-th iteration if  

 

( )2

kH
Tr S  = ( )

1

2

kH
Tr S

+
.  

 

We have ( )
1

2
H

Tr S ≥ ( )
2

2
H

Tr S ≥  . . . ≥  ( )2

kH
Tr S  = ( )

1

2

kH
Tr S

+
. 

 

Let MVVT  =  
kHX  and MVVS  = 

kHS  be the location and covariance 

matrix given by MVV algorithm. Robust squared Mahalanobis distance 

based on MVV is,  

 

( )2 ,RMVV i MVVd X T = ( ) ( )1t
i MVV MVV i MVVX T S X T

−− −  

 

 

for all i = 1, 2, … , n. Large ( )2 ,RMVV i MVVd X T  indicates that iX is a 

suspect. 

 

Proposed algorithm 

 
The FMCD algorithm can be divided in two main steps. The first step which 

consists of the first three points can be considered as the step of multivariate 

ordering based on the Mahalanobis distance. The second one which consists 

of the remaining last three points is the step of data concentration with MCD 

as the objective function. The algorithm that we propose in the next 

paragraph is constructed based on the same structure as FMCD with the 

following criteria: 

receiving the given value then determines if ( )ˆgcd , 1k n =  holds or not. If this 

is the case, he selects two blinding factors ,
n

α β
∗

∈ Ζ  and compute 

( )ˆ modk k g p
α β

≡  and checks that ( )gcd , 1k n = . If this is not case, he goes 
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back to select another blinding factors. Otherwise, he computes and sends 

the signer ( ) ( ) ( )1 1ˆˆ mod .h m h m kk nα
− −

≡                                  

 
Second Interaction: The signer computes and sends 

( ) ( )ˆˆ ˆ ˆ mods h m x kr n≡ +  to the signature-requester which proceed the task by 

calculating and sending the signer ( )( ) ( )1 1ˆˆ ˆ mod
e

s skk k s nα β
− −

≡ + . 

 

Third Interaction: The signer computes and sends ( )ˆ mod
d

u s n≡  to the 

signature-requester. The signature-requester finally computes  

( )ˆ ˆ mod .u u s n≡
 

The above three interactions completes the blind signature scheme. The 

signature-requester produces ( ),k u
 
as a valid signature on message, m. This 

is shown by the following theorem. 

 

Theorem 1. If ( ),k u  is a signature of the message m  produced by the 

proposed new blind signature scheme, then
( ) ( )mod

e h mu k
g y k p≡ , and the 

protocol above is a blind scheme. 

 

 

Proof: Note that, 

 

( ) ( ) ( )( ) ( )( )

( )( )( ) ( )

1 1 1

1 1 1

ˆ ˆ ˆˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆˆ

e eee d e e
u us s s ss skk k s s h m x kr kk k

kk h m kk x kr k h m x kr k

α β α β

α α β α β

− − −

− − −

≡ ≡ ≡ ≡ + ≡ + +

≡ + + ≡ + +

 

and thus   

( ) ( )
( )

( ) ( ) ( ) ( ) ( )ˆ mod .
e kh m kh m x kr k h m h mu x r k

g g g g y k g y k p
α β α β α β+ + +≡ ≡ ≡ ≡  

 

In order to proof the blindness of the protocol we show that given a valid 

signature ( ),k u  and any view ν  there exists a unique pair of blinding factor 

( ),α β  since the signature-requester chooses the blinding factor randomly, 

the blindness of the scheme follows. Assume that the signature has been 

generated during the protocol with view consisting of ( )( )ˆˆ ˆ ˆ ˆ, , , ,r k h m s u  then 

the following equations must hold for ,α β : 
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( )

( ) ( ) ( )

( )( ) ( )

1 1

1 1

ˆ mod

ˆˆ mod

ˆˆ ˆ mod
e

k k g p

h m h m kk n

s skk k s n

α β

α

α β

− −

− −

≡

≡

≡ +

 

 

It is easy to see that the unique solution for ,α β  is given by  

 

( )1 1ˆ ˆ( ) ( ) modh m h m kk pα − −≡ and ( )( )1 1ˆˆ ˆ mod
e

ss k sk nβ α− −≡ − . 

Now it remains to show that ( )ˆ modk k g p
α β≡ . Note that         

( ) ( )

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )
( ) ( ) ( )( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )

1 1 1 1

1 11 1 1 1

1 11 1 1

1 11 1 1

1 11 1 1

ˆ ˆˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ

ˆˆ ˆ ˆ ˆ ˆ

ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆˆ ˆ ˆ ˆ ˆ

e

e

e

e

e

r rh m h m kk ss k sk

rh m h m kk ss k sk h m h m kk

rh m h m kk ss k s h m h m k

rh m h m kk ss k h m x k r h m h m k

rh m h m kk ss k xh m k krh m h m k

α β α
− − − −

− −− − − −

− −− − −

− −− − −

− −− − −

+ ≡ + −

≡ + −

≡ + −

≡ + − +

≡ + − +( )
( )

( )

1

1 1

1 1

ˆ

.

e

e

ss k xh m k

u k xh m k

−

− −

− −

≡ −

≡ −

 

 

Thus we have 

( )( ) ( )( ) ( )
1

1
ˆˆ mod

e e ku xh m k h mr u
k g g g g y k p

α β α β
−

−− −+≡ ≡ ≡ ≡ � 

 

SECURITY ANALYSIS 

In this section, we discuss some security properties of our new blind 

signature scheme. A secure blind signature schemes should satisfy the 

following four requirements (Huang and Chang, 2004): 

 

Randomization: The signer had better injected one or more randomizing 

factors into the blinded message such that the attackers cannot predict the 

exact content of the message the signer signs. In a secure randomized 

signature scheme, a user cannot remove the signer’s randomizing factor. 
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Unforgeability: Only the signer can generate the valid signatures. 

 

Unlinkability: In a secure blind signature scheme, it is computationally 

infeasible for the signer to link a signature-message obtained for verification 

to the instance of the signing protocol that produced the signature.  
 

Blindness: It allows a user to acquire a signature on a message without 

revealing anything about the message to the signer. It also ensures that no 

one can derive a link between a view and valid blind signature except the 

signature-requester. A view of the signer is defined to be the set of all 

messages that the signer has received and generated when issuing the 

signature. Owing to the blindness property, blind signatures have been 

widely used in untraceable electronic cash systems (Okamoto and Ohta, 

1991). 

 

Blindness 

The blindness property of all signature issued by the signer contain a 

clear common information and agreed by the signature-requester and the 

signer, and the signature-requester is unable to change or remove the 

embedded information while keeping the verification of signature 

successful. In the proposed scheme, the signature-requester has to submit the 

blinded data ( )ˆh m
 
to the signer, and then the signer computes and sends 

( )ˆˆ ˆ ˆ( ) mods h m x kr n= +  to the recipient. If the signature-requester can 

successfully change or remove the k̂  from the corresponding 

signature ( ),k u , then he or she computes ˆ ˆˆ ˆ( )s h m x kr= + mod n . However, it 

is difficult to derive the secret key x. Also the signature-requester has to 

submit the blinded data s  to the signer then the signer computes and sends 

û
 

to the signature-requester. The signature-requester cannot change or 

remove   ( )ˆ mod
d

u s n≡  because it is difficult to derive the secret key  d. 

Hence, in the proposed scheme, the signature-requester cannot change or 

remove the k̂ , ŝ  and  û  from the corresponding signature ( ),k u  of message 

m  to forge the unblinded part of the signature. 

 

Randomization 

In the proposed scheme, the signer randomizes the blinded data using 

the random factor r̂  before signing it in the signing phase. In the requesting 

phase, the signer selects an integer r̂   and sends ( )ˆˆ mod
r

k g p≡  to the 

recipient. Then, the recipient sends ( )ˆh m
 

to the signer, and the signer 
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returns ( )( )ˆ ˆˆ ˆ( ) mods h m x kr n= +  to the signature-requester. If the signature-

requester tries to remove r̂  from ŝ , then he has to derive x  

from ( )modxy g p≡ . 

However, it is difficult to determine x   because that the derivation is 

discrete-log problem. Hence, in the proposed scheme, the signature-

requester cannot remove the random r̂  from the corresponding 

signature ( ),k u . 

 

Unlinkability 

For every instance, the signer can record the transmitted messages 

( )( )ˆ ,h m si i  
between the signature-requester and the signer during the 

instance i of the protocol. The pair ( )( )ˆ ,h m si i  is usually referred to as the 

view of the signer to the instance i of the protocol. Thus, we have the 

following theorem: 

 

Theorem 2. Giving a signature ( ),k u
 
produced by the proposed scheme, the 

signer can derive the blinding factors ( ),i iα β′ ′
 
for every ( )( )ˆ ,h m si i  such 

that 

 

( ) ( ) ( ) ( ) ( )( ) ( )
1

1 1 1ˆˆ ˆ ˆmod , mod
e

h m h m kk n s s k k k s ni i i i iα α β
−

− − −′ ′ ′≡ ≡ + . 

Proof:   For every ( )( )ˆ ,h m si i , we have  

 
1 1 11ˆ ˆ ˆˆ ˆ( ) ( ) ( ) mod and ( )( ) mod

e
h m h m kk n s s k k k s ni i i i iα α β− − −−′ ′ ′= ≡ + . 

It is easily to obtain, 

( )1 1 11ˆ ˆ ˆˆ ˆ( ) ( ) mod and modeh m h m kk n s s k s k ni i i iα β α− − −−′ ′ ′≡ ≡ − . 

 
Note that, giving a signature ( , )k u  produced by the proposed scheme, the 

signer can always derive the two blinding factors for every transmitted 

record ( )( )ˆ ,h m si i . This implies that the signer is unable to find the link 

between the signature and its corresponding signing process instance and 

thus the unlinkability property is achieved. 
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Unforgability 

The intruder may try to derive some forged signatures by using 

different ways. We will show that all the attacks fail on our scheme. 

 

Attack 1: Intruder tries to derive the signature ( ),k u  for a given message, 

m by letting one integer fixed and finding the other one. For example, 

intruder selects k and tries to figure out the value of  u  satisfying 
( ) ( )mod

e h mu k
k pg y≡

 
and vise-versa. To do this, intruder first chooses at 

random an integer k. He or she then computes ( ) ( )mod
h m k

k pyα ≡ . Finally he 

or she solves ( )mod
e

ug pα ≡  for u and successful only if both fac and dl are 

breakable.  

 

Attack 2: It is assumed that intruder is able to solve dl problem. In this case, 

intruder knows  x and can generate or calculate the numbers ŝ  and s . 

Unfortunately, he or she does not know  d hence cannot compute 

( )ˆ mod
d

u s n≡  and then cannot compute ( )ˆˆ modu us n≡  and fails to 

produce the signature ( ),k u . 

 

Attack 3: It is assumed that intruder is able to solve the fac problem. That 

means, he knows the prime factorization of n and can find the number d. 

However, he or she cannot compute ŝ  since no information is available for 

x, hence cannot compute s because it is dependent on ŝ , then he or she 

cannot compute ( )ˆˆ modu us n≡ . Thus fails to produce the signature ( ),k u . 

 

Attack 4: Intruder may also try collecting t valid signatures ( ),j jk u  on 

message jm
 

where  1, 2, ...,j t=   and attempts to find secret keys and 

number of the signature scheme. In this case, intruder has t equations given 

as follows: 

 

( ) ( )

( ) ( )

( ) ( )

1 1 1 1

2 2 2 2

mod

mod

mod .

e

e

e

t t t t

u h m x k r n

u h m x k r n

u h m x k r n

≡ +

≡ +

≡ +

�

 
In the above t equations, there are t +1 variables, x and jr  which are not 

known by the intruder. Hence, x stays hard to detect because intruder can 
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generate infinite solutions of the above system of equations but cannot 

figure out which one is correct.   

 

EFFICIENCY PERFORMANCE 

Next, we investigate the performance of our scheme in the number of 

modular multiplication, number of hashing operation, number of random-

number generation, number of inverse computations and number of modular 

exponentiation. The computation costs of the proposed scheme are 

summarized in Table 1. 
 

TABLE 1:   The Computation Costs of the Proposed Blind Signature Scheme.  

Type of Operations 

 

Performed by the signature-

requester 

 

 

Performed by the 

signer 

Modular  multiplication 

 
11 2 

Hashing operation 

 
3 1 

Random-number 

generation 

 

2 1 

Inverse computations 

 
4 0 

Modular exponentiation 

 
7 

 

2 

nth-root computations 

 
0 

 

0 

 

 

In the proposed scheme, no root and inverse computations in *

nΖ  are 

performed by the signer. There are seven modular exponentiations, eleven 

modular multiplications, three hashing operations and twice of random 

number generation performed by the recipient to obtain and verify a 

signature. There are two modular exponentiations, two modular 

multiplications, one hashing operation and once random number generation 

performed by the signer to issue a signature. 
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CONCLUSIONS 

In this paper, we presented a new blind signature scheme based on 

factoring and discrete logarithms. The scheme based on two hard problems 

provides longer and higher level security than scheme that based on a single 

hard problem. The proposed scheme requires minimal operation in signing 

and verifying and thus makes it very efficient. Some possible attacks have 

also been considered and we showed that the scheme secure from those 

attacks. 
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